
new algorithms workshop

Acta Cryst. (2009). D65, 659–671 doi:10.1107/S0907444909011433 659

Acta Crystallographica Section D

Biological
Crystallography

ISSN 0907-4449

Parallel, distributed and GPU computing
technologies in single-particle electron microscopy

Martin Schmeisser, Burkhard C.

Heisen, Mario Luettich, Boris

Busche, Florian Hauer, Tobias

Koske, Karl-Heinz Knauber and

Holger Stark*

Max Planck Institute for Biophysical Chemistry,

Germany

Correspondence e-mail: hstark1@gwdg.de

2009 International Union of Crystallography

Printed in Singapore – all rights reserved

Most known methods for the determination of the structure of

macromolecular complexes are limited or at least restricted

at some point by their computational demands. Recent

developments in information technology such as multicore,

parallel and GPU processing can be used to overcome these

limitations. In particular, graphics processing units (GPUs),

which were originally developed for rendering real-time

effects in computer games, are now ubiquitous and provide

unprecedented computational power for scientific applica-

tions. Each parallel-processing paradigm alone can improve

overall performance; the increased computational perfor-

mance obtained by combining all paradigms, unleashing the

full power of today’s technology, makes certain applications

feasible that were previously virtually impossible. In this

article, state-of-the-art paradigms are introduced, the tools

and infrastructure needed to apply these paradigms are

presented and a state-of-the-art infrastructure and solution

strategy for moving scientific applications to the next

generation of computer hardware is outlined.

Received 10 October 2008

Accepted 27 March 2009

1. Introduction

1.1. Need for speed

Owing to the ever-increasing speed of data collection in

science, computational performance plays a central role in

various disciplines in biology and physics. In biology, some of

the most compute-intense areas are in the field of structural

biology, but new molecular-biology techniques such as ‘deep

sequencing’ also require large computational resources for

data processing and data storage. Computational demands in

the field of structural biology are especially high for high-

resolution structure determination by single-particle electron

cryomicroscopy because an ever-larger number of images are

currently being used to overcome the resolution limits of this

technique. There is certainly some linear computational speed

increase in central processing unit (CPU) technology that can

be expected in the future. However, most of today’s speed

increase is already based on multi-core CPU architecture.

Certain applications, such as the alignment of large numbers

of single-particle cryo-EM images, will require significantly

more computational power than the current improvement in

CPU technology can offer. In some areas future applications

will only be possible if the computational power can be

increased by at least two orders of magnitude. An increase in

computational power is thus essential to keep up with modern

scientific technologies.

1.2. How can computational speed be improved?

For many standard applications, for a very long period of

time programmers did not have to worry about performance

as in recent decades CPU manufacturers have improved the

hardware speed sufficiently. In these cases for many years it

has been a valid approach to simply wait for the hardware to

become faster. Moore’s Law (Moore, 1965), which states that

processing power doubles every 18 months, turned out to be

correct for the entire decade of the 1990s. This was the result

of improvements in the gates-per-die count or transistors per

area (the main attribute of CPUs that Moore based his law

on), the number of instructions executed per time unit (clock

speed) and the so-called instruction-level parallelism (ILP),

basically meaning the possibility of performing more than just

one single operation within the same clock cycle (for example,

summing up two registers and copying the result to another

register). Today this gratuitous ‘free lunch’ (Sutter, 2005;

Sutter & Larus, 2005) of performance gain is over and in

recent years CPU manufacturers have started selling CPUs

with more computational cores instead of faster CPUs, as

beginning in 2003 the laws of physics put an end to the

increase in clock speed. One simple reason for this is that

doubling the clock speed also means halving the distance

travelled by the electrical signal per clock cycle, which requires

the physical size of the CPU to be twice as small. However,

reducing the physical dimensions of CPUs is limited by the

diffraction limits of the lithographic methods used for chip

manufacturing. There are other methods that are used to

increase performance that can at least partly compensate for

the limited increase in clock speed. These are, for example,

sophisticated ILP schemes, speculative execution and branch

prediction, which nowadays are the only remaining basis for

performance improvement apart from the gate count

(Schaller, 1997). These methods are what manufacturers focus

on today, resulting in feature-rich CPUs that are additionally

equipped with an increasing number of computational cores.

While an increased clock cycle automatically speeds up an

existing application, this is not the case for additional CPUs or

cores. Here, the extent that the application can benefit from

additional cores depends on the computational problem, the

algorithm used to solve it and the application architecture.

Performance improvement is then totally dependent on the

programmer, who has to develop optimized code in order to

obtain the maximum possible speedup. For the next decade,

the limiting factor in performance will be the ability to write

and rewrite applications to scale at a rate that keeps up with

the rate of core count. Outlining applications for concurrency

may be the ‘new free lunch’ (Wrinn, 2007), the new way of

utilizing even higher core counts in the future without having

to rewrite the code over and over again.

1.3. Divide et impera

The extent to which the speed of an algorithm can benefit

from multiple CPU cores using distributed or parallel pro-

cessing depends on several conditions. In the first place, it

must be possible to break the problem itself down into smaller

subproblems. This ‘divide-and-conquer’ approach is the main

paradigm underlying parallel and distributed computing. The

main questions are how many independent chunks of work are

ready to be computed at any time and what is the number of

CPUs or computational cores that can be harnessed. Usually, a

problem or algorithm will consist of a fraction that is serial and

cannot be processed in parallel, i.e. when a computation

depends on a previous computational result. The class of

problems termed ‘embarrassingly parallel’ describes the ideal

case when all the computations can be performed indepen-

dently.

2. Hardware architectures and their implications for
parallel processing

The building block of all computers is the von Neumann archi-

tecture (von Neumann, 1946; see Fig. 1). The main principle is

that the memory that the CPU works on contains both pro-

gram instructions and data to process. This design was known

from the very beginning to be theoretically limited. The con-

nection system between the data and the program instructions,

the so-called data and instruction bus, can become a com-

munication bottleneck between the processor and the

memory. No problems existed as long as processing an

instruction was slower than the speed of providing data to

process. Until the 1990s, the CPU was the slowest unit in the

computer, while the bus speed was still sufficient. At this time,

the so-called ‘von Neumann bottleneck’ was a mere theor-

etical problem. Starting in the mid-1990s, CPUs clock-speed

improvement outran random-access memory (RAM) speed,

making actual execution faster than the data feed. Nowadays,

therefore, the combination of memory and bus forms the ‘von

Neumann bottleneck’, which is mostly overcome or atte-

nuated by caching, which basically means integrating a fast but

small memory directly into the CPU. This is why the CPU

speed usually increases in parallel with the length of the cache

lines. The single-threaded processing that leads to multiple

processes running through the same single-threaded pipe and

accessing all their data through a single memory interface led

to today’s processors having more cache than they do logic.

This caching is required in order to keep the high-speed

sequential processors fed. Another technique to speed up

computations without increasing the clock speed is so-called

vector computing. While a regular instruction such as an

addition or multiplication usually only affects scalars, vector

registers and vector instructions were introduced that perform

the same operation on multiple scalars or on vectors within

one clock cycle.

2.1. If you cannot have a faster CPU then use more of them

Using more than one CPU within one computer is less

trivial than it sounds. All the other components such as RAM

and buses have to be fit for multi-CPU demands. All theore-

tically explored or practically established computer archi-

tectures can be classified using Flynn’s taxonomy (Flynn,

1972). Here, architectures are classified by the number of

new algorithms workshop

660 Schmeisser et al. � Computing technologies in single-particle electron microscopy Acta Cryst. (2009). D65, 659–671

instruction streams and data streams (see Fig. 2). The classical

von Neumann approach belongs to the single instruction

stream, single data stream (SISD) class of architectures. All

the other architectures are ways of combining many von

Neumann building blocks. The first class of hardware to

exploit parallelism and concurrency were hardware shared-

memory machines. This means that more than one CPU

resides inside the same physical machine, working on the same

shared memory. Most common today are the single program,

multiple data stream (SPMD) architectures, in which multiple

autonomous processors simultaneously execute the same

program at independent points, rather than in the lockstep

that single instruction, multiple data (SIMD) imposes on

different data. This architecture is also referred to as single

process, multiple data. This is still the most common style of

parallel programming, especially for shared-memory machines

within the same hardware node. Another common approach is

the multiple program, multiple data (MPMD) model, in which

multiple autonomous processors simultaneously run inde-

pendent programs. Typically, such systems pick one node to be

the ‘host’ (the ‘explicit host/node programming model’) or

‘manager’ (the ‘manager/worker’ strategy) that runs one

program that farms out data to all the other nodes, which all

run a second program. Those other nodes then return their

results directly to the manager.

2.1.1. Shared-memory computing. Extensive research has

been performed on exploiting different computer archi-

tectures in the past. The main paradigm here is so-called

shared memory (SM) computing, in which many CPUs share

the same RAM. This approach can further be divided into

symmetric multiprocessor (SMP) systems, in which the

memory address space is the same for all the CPUs, and so-

called non-uniform memory access (NUMA), in which every

CPU has an own address space, resulting in local memory

being accessible faster than remote memory.

2.1.2. Farming. The next logical step is to scale out to many

physical computers: the so-called nodes. This technique is also

known as farming. This is not really a stand-alone hardware

architecture but a way of clustering several computers (nodes)

to simulate NUMA architecture by passing messages between

individual nodes across a network connection using a number

of different approaches. So-called dedicated homogeneous

clustering combines a fixed number of nodes with exactly

identical hardware and thus computational power that are

dedicated to the cluster computations. Here, every computa-

tional node can be trusted to be permanently available and to

have the same processing resources and all nodes are

connected via high-speed networking to enable point-to-point

communication. The other extreme is a completely hetero-

geneous nondedicated environment in which no resource can

be trusted to be available and communication is only possible

between individual nodes and a managing server or master

node (see Table 1). The most prominent examples for the

latter are projects such as SETI@Home or Folding@Home

using the BOINC framework

(Anderson, 2004) from the realm of

volunteer computing.

2.1.3. GPU computing. In addition to

the multicore revolution (Herlihy &

Luchangco, 2008), graphical processing

units (GPUs) have recently become

more than hardware for displaying

graphics and have become a massive

parallel processor for general-purpose

computing (Buck, 2007b). Most obser-

vers agree that the GPU is gaining on

the CPU as the single most important

piece of silicon inside a PC. Moore’s law,

which states that computing perfor-

mance doubles every 18 months, is

cubed for GPUs. The scientific reason

why GPUs overcome and will continue

to overcome Moore’s Law is the fact

that CPUs, as considered by Moore,

follow the von Neumann hardware

model. The architecture of a single GPU

computer unit has a completely

different structure, which is called a

‘stream processor’ in supercomputing

(see Fig. 3). Multiple-stream processors

obtain their input from other stream

processors via dedicated pipes. Concur-

rent input/output (IO) is history on the

chip and there is no waiting for data to

new algorithms workshop

Acta Cryst. (2009). D65, 659–671 Schmeisser et al. � Computing technologies in single-particle electron microscopy 661

Figure 1
The von Neumann architecture is the reference model for programmable computing machines. The
memory contains both data to process and program instructions to execute. This architecture was
revolutionary in times where the program was either hard-wired or present in the form of punch
cards. This architecture is the foundation of most computers today. The interconnection system is
called the bus and forms the von Neumann bottleneck.

process. Moore’s law also underestimates the speed at which

silicon becomes faster by a considerable margin. With today’s

advanced fabrication processes, the amount of transistors on a

chip doubles every 14 months. Additionally, the processing

speed is doubled about every 20 months. Combined with

architectural or algorithmic content, a doubling of speed

occurs every six months for GPUs. The hardware architecture

of the GPU is designed to eliminate the von Neumann

bottleneck by devoting more transistors to data processing.

Every stream processor has an individual memory interface.

Memory-access latency can be further hidden by calculations.

The same program can thus execute on many data elements in

parallel, unhindered by a single memory interface. The GPU is

especially suited for problems that can be expressed as data-

parallel computations, in which the same program is executed

on many data elements in parallel with a high ratio of arith-

metic operations to global memory operations. Because of the

parallel execution on multiple data elements, there is a low

requirement for flow control. Algorithms that process large

data sets which can be treated in parallel can be sped up.

Algorithms that cannot be expressed in a data-parallel way,

especially those that rely on sophisticated flow control, are not

suitable for GPU processing.

3. Change your code

3.1. Software standards for shared-
memory and distributed computing

None of the mentioned architectures

will speed up any algorithm that is not

designed to benefit from concurrent

hardware. Generally speaking, extra

layers of programming code are needed

for the synchronization and commu-

nication of many cores or CPUs within

one physical computer, the synchroni-

zation and communication of different

nodes among each other and, last but

not least, for using parallel co-proces-

sors such as GPUs.

In practice, a reliable locking infra-

structure is necessary for any kind of

shared-memory programming in order

to prevent uncontrolled concurrent

access to the same data. Otherwise,

memory conflicts will arise that will lead

to deadlocks or race conditions. If, for

example, a shared counter value is

increased, it has to be read first. The

new now increased value has to be

computed and then finally written back

to the shared-memory location. If this is

allowed concurrently, unpredictable

results will occur, termed race condi-

new algorithms workshop

662 Schmeisser et al. � Computing technologies in single-particle electron microscopy Acta Cryst. (2009). D65, 659–671

Figure 2
Flynn’s taxonomy classifies computing architectures by the number of instruction and data streams.
The number of processing elements can exceed the number shown in the figure, except for the SISD
case. SISD is the classical von Neumann architecture and the classic single-processor system. SIMD
computers are also known as array or vector computers, executing the same instruction on a vector
of data elements. Examples of MIMD are either local shared-memory systems or distributed
systems in which several processors execute different instructions on different data streams. MISD
is more theoretical; it can be used for redundant calculations on more than one data stream for error
detection.

Table 1
Dedicated versus nondedicated clustering.

Property Dynamic nodes Dedicated nodes

Node performance Different Same
Node count Dynamic Fixed
Resources Dynamic Fixed
Communication Node-initiated only Dynamic, even point to point
Connectivity Different (unreliable) Same (reliable)
Reliability Might never finish processing work unit Will always finish processing work unit
Persistency Master/controller persistent Master/controller not persistent
Frameworks used BOINC, SmartTray MPI, CORBA, .net remoting
Application domain Embarrassing parallel problems (other types with workarounds) Any kind of project
Infrastructure needed Transactional storage, master/controller for job status Reliable internode communication, reliable nodes

tions, because the task of increasing is not ‘atomic’. The task

consists of three operations that must not be interrupted.

Locking the counter until the whole task is completed can

prevent race conditions. This may lead to deadlocks where one

task waits for the other and vice versa. The programmer thus

needs to rely on combinations of ‘locks’ and conditions such as

‘semaphores’ or ‘monitors’ to prevent concurrent access to the

same shared data. This approach enables the developer to

treat sections of code as ‘atomic’ uninterruptible instructions

in order to simplify reasoning about instruction interactions.

One shortcoming is that the decision whether coarse-

grained locking or fine-grained locking should be used is

totally up to the developer. Coarse-grained locking means that

a single lock protects a whole data structure. This is simple to

implement but permits little or no concurrency. In contrast,

fine-grained locking, in which a lock is associated with each

component of the data structure, is complicated to implement

and may lead to a larger parallelization overhead. The best

possible solution will only be valid for a single problem and

hardware, making it very difficult to write scalable and

portable code at the same time. Fortunately, there are various

subtle nonblocking algorithms for standard problems and data

structures (Herlihy, 1991). These facilitate standard applica-

tions without the risk of deadlocks or race conditions.

Another paradigm that has gained importance in distrib-

uted computing is termed the ‘transactional memory’

approach (Herlihy & Moss, 1993). Here, the possible clashes

of shared-memory computing are overcome by the so-called

transaction paradigm, which originated in the field of database

system design. It enables the developer to mark a designated

region of code as a transaction that is then executed atomically

by a part of the system. A distributed transaction controller is

new algorithms workshop

Acta Cryst. (2009). D65, 659–671 Schmeisser et al. � Computing technologies in single-particle electron microscopy 663

Figure 3
Example of modern GPU hardware architecture (modified from Lefohn et al., 2008). The von Neumann bottleneck formed by a single memory interface
is eliminated. Each green square represents a scalar processor grouped within an array of streaming multiprocessors. Memory is arranged in three logical
levels. Global memory (the lowest level in the figure) can be accessed by all streaming multiprocessors through individual memory interfaces. Different
types of memory exist representing the CUDA programming model: thread local, intra-thread block-shared and globally shared memory. This logical
hierarchy is mapped to hardware design. Thread local memory is implemented in registers residing within the multiprocessors, which are mapped to
individual SPs (not shown). Additionally, dynamic random-access memory (DRAM) can be allocated as private local memory per thread. Intra-thread
block-shared memory is implemented as a fast parallel data cache that is integrated in the multiprocessors. Global memory is implemented as DRAM
separated into read-only and read/write regions. Two levels of caching accelerate access to global memory. L1 is a read-only cache that is shared by all
SPs and speeds up reads from the constant memory space L2, which is a read-only region of global device memory. The caching mechanism is
implemented per multiprocessor to eliminate the von Neumann bottleneck. A hardware mechanism, the SIMT controller for the creation of threads and
the context switching between threads (work distribution), makes the single instruction multiple threads (SIMT) approach feasible. Currently, up to
12 000 threads can be executed with virtually no overhead.

in control of locks, monitors and semaphores. A transaction

that cannot be executed is rolled back and its effects are

discarded. The underlying system will probably also use locks

or nonblocking algorithms for the implementation of trans-

actions, but the complexity is encapsulated and remains

invisible to the application programmer.

Industry-standard solution libraries exist for the different

levels of concurrency. For shared-memory computing within

one node, today’s de facto standard is open multi-processing or

OpenMP (Dagum & Menon, 1998), which is a framework for

the parallelization of C/C++ and Fortran at the compiler level.

It allows the programmer to mark sections as parallelizable.

The compiler and runtime will then be able to unroll a loop

and distribute it across given CPUs or cores for parallel

execution. There is also a de facto standard for message

passing between nodes, which is called the message-passing

interface (MPI; Park & Hariri, 1997). This is a fast method for

copying data between computational nodes and aggregating

results from computational nodes. MPI’s predecessor with

common goals was PVM: the parallel virtual machine

(Beguelin et al., 1991). Of course, MPI and OpenMP can be

mixed to parallelize across multiple CPUs within multiple

nodes (Smith & Bull, 2001). Several frameworks exist for the

programming of GPUs, which differ regarding the hardware

manufacturer of the GPU used.

3.2. Software standards for GPU programming

As mentioned previously, the GPU is now a massive

multicore parallel or streaming processor and can be used for

general-purpose computing. Especially in image processing

and three-dimensional reconstruction, a tremendous amount

of effort has been made to speed up common problems

(Bilbao-Castro et al., 2004) and several libraries currently exist

that exploit parallel processing features for common tasks.

The most prominent example is the discrete fast Fourier

transformation (FFT), which can now be sped up by up to 40

times on the GPU in comparison to CPUs (Govindaraju et al.,

2008). An illustrative summary of performance gain on image-

processing algorithms that will be especially interesting to

crystallographers can be found in Castaño-Dı́ez et al. (2008).

In the early days, programming the GPU meant ‘abusing’

graphics primitives for general-purpose computing (Moreland

& Angel, 2003). Since GPUs were originally peripheral

devices, computations have to be initialized and controlled by

the device-driver software (Mark et al., 2003) and the graphics

hardware producer defines the application programmer

interfaces (Pharr & Fernando, 2005). Since today’s graphics-

card market consists of mainly two companies, ATI and

NVIDIA, there are unfortunately two frameworks depending

on the GPU brand used: CUDA for NVIDIA (Buck, 2007a)

and CTM/Brook+ for ATI (Hensley, 2007). In the future, a

standard interface for using the GPU for general-purpose

computations will hopefully be part of the operating system or

compilers will be able to generate the necessary code auto-

matically as is performed with OpenMP language extensions.

Apple has announced that its next operating system will

support OpenCL, a C/C++ extension similar to CUDA, as an

essential building block which facilitates execution on any

given multicore CPU or GPU hardware, in 2009 (Munshi,

2008). OpenCL will also be available as an open standard

for other platforms, including Linux and Windows. Addition-

ally, Microsoft Research, also steering towards hardware-

independent solutions, recently conveyed a parallel pro-

gramming language called BSGP that is likely to replace

graphics hardware manufacturer-dependent solutions at least

for the Windows platform (Hou et al., 2008). Another break

from hardware dependency might involve MCUDA (Stratton

et al., 2008), which also enables code written for graphics

hardware to be efficiently executed on any given multi-core

hardware.

4. Historical limitations alleged by Amdahl’s law

Until the 1990s, everything but the single instruction-stream

approach was mostly scientific and experimental because even

embarrassingly parallel application scaling capabilities were

thought to be limited by Amdahl’s law (Amdahl, 1967; see

Fig. 4). This law seemed to be a fundamental limit on how

much concurrent code can be sped up. Applied to parallel

computing, this law describes the change of total speedup

given different numbers of processing cores. Following

Amdahl’s conclusion, the theoretical maximum speedup is

limited by the portion of the program that cannot be made

parallel (i.e. the serial part). If p is the amount of time spent

(by a serial processor) on parts of the program that can be

computed in parallel, the maximum speedup using N proces-

sing cores is speedupAmdahl = 1/[s + (p/N)], where s = 1 � p,

assuming a total execution time of 1. Briefly, this law renders

the usage of ever-increasing numbers of processors useless as

soon as p is significantly smaller than 1. If, for example, p is

0.95 then s is 0.05 and the maximum speedup that theoretically

could be achieved is limited to 20 (even with an infinite

number of processors).

Fortunately, this law does not hold true in practice. This is

mainly because the implicit assumption that p is independent

of N is often violated. In practice, the problem size is often

scaled with N. The s component itself consists of multiple

parts. On one hand, the amount of time spent on program

startup, serial bottlenecks etc., which contributes to the s

component, does not necessarily grow linearly with problem

size. On the other hand, the communication between and

synchronization of multiple processors (parallelization over-

head), which also makes up part of s, usually does increase

with N. Thus, increasing the problem size for a given run time

effectively results in an increased value of p. Based on the

assumptions of constant run time (not problem size) and lack

of parallelization overhead, Gustafson stated that the total

speedup of a parallel program is given by the Gustafson–

Barsis law: scaledspeedupGustafson = N + (1 � N)s (Gustafson,

1988; see Fig. 5). As N increases to infinity, the total work that

can be accomplished also increases to infinity. Amdahl’s law

can be considered as the lower speedup boundary and the

Gustafson–Barsis law as the upper speedup boundary.

new algorithms workshop

664 Schmeisser et al. � Computing technologies in single-particle electron microscopy Acta Cryst. (2009). D65, 659–671

Depending on the problem itself, its implementation and the

hardware infrastructure used, the effective speedup will lie

somewhere between Amdahl’s and Gustafson’s predictions.

The larger the size of the problem, the closer the speedup will

be to the number of processors.

5. Transition to parallel computing: NVIDIA CUDA

Driven by developments in multicore technology in general

and GPU technology in particular, a large amount of research

on parallel programming techniques has taken place. We will

now focus on NVIDIA’s compute unified device architecture

(CUDA) and outline the way in which parallel programming

with CUDA differs from standard programming in C/C++.

Surprisingly, there is not a great difference. CUDA comes

with a minimal extension to the C/C++ language to the pro-

grammer. In the CUDA approach, normal C code is required

for a serial program that calls parallel threads to execute the

parallel program parts, termed kernels. The serial portion of

the code executes on the host CPU and the parallel kernels

execute as parallel threads in thread blocks on the GPU, which

in this context is called a ‘device’. A parallel kernel may be a

single simple function or a complete program, but many

threads in parallel, which the programmer has to keep in mind,

will execute it.

Threads are organized in thread blocks, which are arrays of

threads. Coarse-grained or task parallelism can be realised via

thread blocks. Fine-grained data parallelism such as in a vector

machine can be controlled via single threads. In contrast to

even the most sophisticated CPU threading models, CUDA

threads are extremely lightweight. This property means that

the overhead for the creation of threads and context switching

between threads is reduced to virtually one GPU clock cycle,

in comparison to several hundred CPU clock cycles for CPU

threads such as boost threads or p-threads (Nickolls et al.,

2008). This technology makes one thread per data element

feasible.

Initializing parallel thread blocks, the CUDA runtime and

compiler will schedule the execution of up to 12 000 threads

simultaneously. The main job of the programmer becomes the

parallel decomposition of the problem, analysis of the level of

parallelism and distribution to coarse-grained task and fine-

grained data-parallel processing. Threads can cooperate,

synchronize and share data through shared memory. Thread

blocks are organized in grids of blocks with one to many

thread blocks per grid. Sequential grids can be used for

sequential processing. The developer has to specify the grid

and block dimensions and the thread in block dimensions.

Currently, a single thread block is limited to 512 threads, which

is a hardwired limit and is related to the zero-overhead

approach for context switching and thread creation.

Synchronization commands also exist at the thread and block

level. The command ‘_synchthreads()’ applies a barrier

synchronization of all the threads within one block. Addi-

new algorithms workshop

Acta Cryst. (2009). D65, 659–671 Schmeisser et al. � Computing technologies in single-particle electron microscopy 665

Figure 5
Scaled speedup predicted by the Gustafson–Barsis law. Gustafson argued
that the sequential portion of a problem is not fixed and does not
necessarily grow with problem size. For example, if the serial phase is only
an initialization phase and the main calculations can run independently in
parallel, then by increasing the problem size the sequential fraction can
effectively be reduced to obtain a much larger speedup than that
predicted by Amdahl’s law.

Figure 4
Amdahl’s law (established in 1967) appeared to be a fundamental limit on
the maximum speedup or performance gain achievable by parallelization
of an algorithm to multiple CPUs. The fraction of parallelizable code
drives this law. The law was formulated under the assumption of a fixed
problem size. This assumption means that the ratio between the serial and
parallel code fraction is constant. Under this assumption, the efficiency of
parallelization is constantly decreasing with the growing number of CPUs.
Until recently, this was still accepted in the range between two and eight
CPUs. However, when increasing the problem size while not linearly
increasing the serial fraction of the algorithm, Amdahl’s law has to be re-
evaluated and a much higher scalable speedup or performance gain can
be achieved.

tionally, there are atomic operations that can be trusted not to

be interrupted by other threads.

In addition to the programming model, a new processing

model that NVIDIA calls single instruction, multiple thread

(SIMT; Lindholm et al., 2008) is implemented on GPUs. Since

a GPU is a massively multi-threaded processor array, a new

architecture is needed to map thousands of threads running

several programs to the streaming multiprocessors (SM). The

SM maps each thread to one scalar core (SP) and each scalar

thread executes independently with its own instruction

addresses and register state. The SM SIMT unit creates,

manages, schedules and executes threads in groups of parallel

threads termed warps. The threads in a warp start together but

are free to branch and execute independently. Every instruc-

tion issue time, the SIMT unit selects a warp that is ready to

execute and issues the next instruction to the active threads of

the warp. Full efficiency is realised when all threads of a warp

agree on their execution path. Threads that are not on the

same execution path will be disabled until they converge back

to the main execution path. SIMT architecture is quite similar

to SIMD vector organization, as a single instruction controls

multiple processing elements. The main difference is that in

SIMD the width is exposed to the software, while SIMT

behaves like a single thread. SIMT enables programmers to

write thread-level parallel code for independent scalar threads

as well as data-parallel code for coordinated threads. On the

hardware side, the execution of the threads or SIMT (Lind-

holm et al., 2008) instructions is also very interesting. All 32

threads form a warp of threads that executes one SIMT

instruction in parallel. In summary, SIMT encompasses

threads while SIMD encompasses data. SIMT offers single

thread scalar programming with SIMD efficiency (Nickolls et

al., 2008).

6. Data-parallel programming

Traditional parallel programming methods often have limited

scaling capabilities because the serialization and de-serial-

ization phases required produce a linear growth in serial code

if each core has to synchronize with a single core. For point-to-

point synchronization between multiple cores, the overhead

can even increase as a combinatorial of core count. A para-

digm which scales with core count without the need to

restructure existing code would be very useful to prevent

future core counts from exceeding the level of parallelism an

application can scale to. A finer level of granularity has to be

identified for parallelism in order to prevent the presence of

more processing cores than threads. In the near future, the

only type of element that will be available in the same number

as cores will be data elements (Boyd, 2008). Therefore, the

data-parallel approach looks for fine-grained inner loops

within each computational step and parallelizes those with the

goal of having one logical core for processing each data

element. Ideally, this should take place automatically by the

combination of the compiler and the runtime system. There

are several programming languages or language extensions to

perform this such as High Performance Fortran or Co-Array,

but these hide unique aspects of data-parallel programming or

the processor hardware. Array-based languages such as

Microsoft Research Accelerator (Tarditi et al., 2005, 2006)

need a very high level of abstraction and are rarely portable or

even available for more than one specific platform. The

graphics hardware manufacturers involved are developing

new data-parallel languages for their individual hardware:

CAL and Brook+ for ATI (Hensley, 2007) and CUDA for

NVIDIA (Nickolls et al., 2008). The syntax of these languages

provides a direct mapping to hardware that enables specific

optimizations and access to hardware features that no other

approach allows. The main disadvantage is once again the

dependency on the (graphics) platform until hardware and

operating-system manufacturers eventually agree on a unified

application programmer’s interface (API) for GPUs, which

might even become available within the near future. For

Microsoft Windows systems, proprietary arises from the

introduction of DirectX 11 featuring compute-shaders (an

API for GPU computing independent of the hardware

manufacturer) and additionally a completely new C/C++

extension called BSGP that has just recently been released

(Hou et al., 2008). These systems can create and execute

parallel kernels graphics hardware independently. For all

operating systems and hardware this will soon be available

royalty-free owing to OpenCL (Munshi, 2008). Another

option might be MCUDA, a CUDA extension that can effi-

ciently run CUDA kernels on any given multicore hardware

(Stratton et al., 2008).

7. The SmartTray

We will now introduce our contributions to parallel computing

and the reasons why we chose various different strategies. We

started in 2004 with a set of mostly embarrassingly parallel

Fortran applications that were parallelized using MPI. The

first thing we noticed was that there were certain scheduling

limitations of the MPI approach via a ‘machines file’ in which

all the nodes included in the calculations need to be listed.

Furthermore, one of the drawbacks of MPI was the insufficient

failover model, which is a basic requirement within our

department where several people share the same computing

resources with very long-running calculations that should not

stop in the case of a single node’s failure. Thus, there was a

need for more dynamic resource allocation than that provided

by MPI. Some of the most desired features were (i) the

possibility of pausing a long-running job for the benefit of a

smaller but highly urgent job, (ii) a mechanism for dynamic

resource allocation, namely reassigning nodes to already

running jobs, (iii) adding nodes to a running calculation and

(iv) a failover mechanism that enables a node to automatically

rejoin calculations after solving/encountering a hardware

problem. Research on middleware implementing these exact

features as an industry standard is currently ongoing (Wang et

al., 2008), but was not available in 2004. Another highly

desired feature was to include the increasing computational

power of standard workstations available locally in our

calculations. For example, a secretary’s workstation that was

new algorithms workshop

666 Schmeisser et al. � Computing technologies in single-particle electron microscopy Acta Cryst. (2009). D65, 659–671

usually utilized only during daytime hours had more compu-

tational power than some of our dedicated cluster nodes. To

implement the above-mentioned features and to also make

use of the nondedicated computational resources, we have

developed a new framework which we call ‘SmartTray’

(Fig. 6). It mainly consists of a self-updating SmartClient

running in the system tray of the Windows operating system.

The SmartTray Framework, which is still experimental, is

based on the master worker approach in combination with

transactional memory. A job consists of work packs, which are

administered by a master server. Since this master server is

implemented as a web service using Microsoft SQL Server

2005, which is a transactional database for storage, the trans-

actional capabilities of the database can also be used to

emulate transactional memory by means of high-performance

database mechanisms. In contrast to the standard approach, in

which the master server initiates communication to the

computational nodes, owing to inversion of control from

master to node the whole system is kept as dynamic as

possible. Initiating the communication on the node rather than

on the master server is thus the key issue for inverting the

control. Each single node polls work packs from the master

server, executes them and returns the results to the master

server. In case of node failure, a work pack will not be

completely finished in time. The same work pack will then

simply be executed again by another node. A recovered node

can also restart, contributing to the overall calculations, simply

by polling a new work pack. A major advantage of the

SmartTray approach is that it is programmed to run hardware

detection on each node before entering computations. Based

new algorithms workshop

Acta Cryst. (2009). D65, 659–671 Schmeisser et al. � Computing technologies in single-particle electron microscopy 667

Figure 6
The workflow of our SmartTray Framework. A computation is a job (b) that consists of multiple work packs (d) that can be independently processed in
parallel. A work pack contains both the data to process and the computation instructions. The job is created by the user (a) and hosted by a master server
[represented logically by (c) and (g)]. All computational nodes, dedicated cluster nodes or volunteer computers (e) poll work packs (d) from the master
server (c), execute the calculation (f) and send the result to the master server (g). When a work pack’s result is not returned within a given time-out
period (or nodes are idle otherwise), the work pack will be re-dispensed as a failover measure. As a side effect, the master server holds a constantly
updated list of nodes that are willing to participate in calculations that includes their hardware features.

on the hardware, the software version of the main logic will

then choose the correct mode of execution. In case of a

multicore or a multi-CPU node, the OpenMP version will be

executed.

For GPU computing, we focused on NVIDIA as a hardware

manufacturer and NVIDIA CUDA as a programming

language. However, our first experience with GPU program-

ming started before CUDA became available. At that time,

programming the GPU was performed by ‘abusing’ the GPU

graphics primitives for general-purpose computations. Here,

we started with OpenGL Shading Language (GLSL) because

we did not want to restrict ourselves to a specific graphics

hardware manufacturer. However, it became evident that

hardware independence also leads to a loss of overall

performance. For this reason, we subsequently focused on

NVIDIA shader language, NVIDIA Cg (Mark et al., 2003), a

C extension originally designed for programming visual

effects. NVIDIA Cg and Brook (Buck et al., 2004) were thus

the first languages for general-purpose computations on

graphics cards. While Brook is a platform-independent

streaming language with an OpenMP CPU, OpenGL, DirectX

9 and now AMD CTM backend, NVIDIA Cg is proprietary

for NVIDIA hardware only. Brook is now called Brook+ and

became ATI’s CUDA equivalent, lacking an NVIDIA

backend. Currently, a hardware manufacturer has to be

chosen owing to incompatibilities between the graphics cards

currently available on the market. With the choice of manu-

facturer made, the first applications we ported were FFT

calculations and three-dimensional reconstruction techniques

such as SIRT and ART. Immediately obtaining a speedup

factor of 30 in our three-dimensional reconstruction algo-

rithms on the graphics card motivated us to incorporate the

GPU version into our SmartTray approach. SmartTray is now

able to detect the graphics card and can then automatically

make use of the faster GPU software. We were amongst the

first early adaptors after CUDA was launched together with

the NVIDIA Tesla unified graphics and computing archi-

tecture (Buck, 2007a). The Tesla board is the NVIDIA

compute card. However, CUDA code also runs on NVIDIA

GeForce 8800 consumer graphics boards and we actually

originally started software development on the GeForce

boards while waiting for the Tesla boards to be delivered.

Currently, we have two systems running in our GPU cluster.

One system is the NVIDIA Tesla compute server. This server

is a rack-mountable one height unit (HU) computer

containing four Tesla GPUs. Each Tesla compute server needs

another CPU server with two fast PCI express connections. A

Tesla compute server and a CPU server are thus mounted

alternatively into a 19-inch rack. Apart from this commercial

solution, we have also developed a homemade GPU compute

server (see Fig. 7). This system features three GPUs, eight

CPU cores, six hard disks and memory on two HUs, while the

NVIDIA prefab version comes with four GPUSs, no CPU

cores, no hard disks and no memory at all on one HU and

additionally needs the above-mentioned extra CPU server to

run.

8. Getting started with data-parallel processing

Another important factor to consider is the optimized usage of

the computational resources. Will there be concurrent tasks

that have to be scheduled? What should happen in the case of

hardware failure? Will a single node failure affect the whole

computation? Should the solution be optimized for perfor-

mance of an individual problem or for throughput if many

people run several computations? These considerations

depend strongly on the individual demands, needs and

amounts budgeted. The hardware chosen should of course

match the software architecture and vice versa. Once the

hardware has been chosen, the hierarchy of the problem has to

new algorithms workshop

668 Schmeisser et al. � Computing technologies in single-particle electron microscopy Acta Cryst. (2009). D65, 659–671

Figure 7
The blueprint of our homemade GPU server featuring two CPUs, three
GPUs, six hard disks (f) and memory on two height units (HU). The
overall layout is a sandwich design in a standard 19-inch two HU case.
The main board’s three PCI-Express slots are extended using extender
cables. For cooling purposes a battery of four fans (d) is installed between
the main board compartment and the hard disk and power supply area.
The power supply fan’s built-in direction must be inverted and another
fan (d) must be installed to additionally cool the 1 kW power supply.
Additionally, another fan (b) is installed to ensure CPU cooling. On top
of this, two custom rods (e) are mounted to support the GPUs (a). For
space and thermal reasons, the GPUs used must be stripped from their
fans and casings, resulting in the slimmer bare-bones version (a). Finally,
the GPUs are mounted on the supporting rods and connected to the
PCI-E slots via the extender cables.

be mapped to the given hardware. Parallelism and its granu-

larity have to be identified and distributed amongst the layers

of the application and thus the tiers of the hardware. For every

layer or tier the decision has to be made whether standard

patterns/libraries which might not give the maximum possible

performance gain should be used (this consideration is

generally strongly recommended for maintenance and port-

ability reasons) or whether the potential scaling merits hand

coding and optimization.

To start initial parallel programming on graphics cards is

actually very easy. Along with the software-development kits

(SDKs) and toolkits that can be downloaded from the internet

for the different graphics cards, it is also possible to download

large sets of examples, documentation and even GPU accel-

erated maths and performance libraries. Obviously, there are

some infrastructure requirements for the setup of a large-scale

GPU compute cluster for high-performance computing. The

main limiting points at the level of GPU clusters are heat

generation and power consumption, which make a sophisti-

cated cooling infrastructure indispensable. The computing

power per volume and thus the heat generated is maximized to

levels far above blade server systems. In our system, we thus

use Rittal’s liquid-cooling packages (LCP) combined with an

in-house water-cooling system to operate the cluster at con-

stant temperature. This system relies on water cooling to cool

the air in the otherwise sealed server racks. Heat exchangers

are thus required as basic parts of the infrastructure.

From our experiences, the initial development of GPU-

exploiting code can best be implemented on a local machine

featuring at least one CUDA-enabled device using the CUDA

SDK and toolkit. Once the implementation of an algorithm for

data-parallel processing, the actual parallel decomposition, is

complete, further distribution to several GPUs can be tackled.

The approach chosen for this distribution strongly depends on

the available resources. If an infrastructure exists where

several GPUs are available within one machine, the work

distribution to these is best realised using Boost or p-threads.

If several machines featuring GPUs are available, the distri-

bution to these is best realised using MPI or a SmartTray-like

framework.

9. Discussion and outlook

Currently, the preferred trend of increasing CPU core count

over execution speed is very likely to continue in the future.

Therefore, the next generation of CPUs will again not signif-

icantly speed up existing applications if they are not prepared

to harness the power of these additional cores. Furthermore,

commodity graphics hardware is evolving to become a new

generation of massively parallel streaming processors for

general-purpose computing. Scientists and developers are

challenged to port existing applications to the new data-

parallel computing paradigms and to introduce as much con-

currency in the algorithms as possible (if possible, using one

thread per data element). This strategy guarantees optimum

scaling with core count. Additionally, hardware such as GPUs

can and should be included at the level of desktop computers

and even up to dedicated GPU cluster solutions. Unfortu-

nately, today these new paradigms are still hardware-

dependent, but there are initial indications that this will

change within the near future (Hou et al., 2008; Munshi, 2008;

Stratton et al., 2008). Currently, one still needs to be prepared

for the possibility that entering GPU computing may require

rewriting the code partially for the next hardware generation.

Nevertheless, this can be expected to be rather trivial because

the data-parallel approach is not likely to change dramatically

over time. The technology exists to harness today’s state-of-

the-art system architecture for at least one full compute-

cluster duty cycle from commissioning to the end of financial

amortization. Approaches such as OpenCL, MCUDA or

BSGP target these architectures and are also prepared for

Intel’s and AMD’s GPU/CPU developments of hybrid or

extreme multicore architectures that will soon enter the

market. Larrabee for Intel (Seiler et al., 2008) and Fusion from

ATI are targeted to recapture market shares from GPU

manufacturers and in visual computing. No matter how

powerful GPUs may be for general-purpose computations,

they are still a workaround and no panacea. Especially when

irregular data structures are needed or scatter–gather opera-

tions cannot be avoided, GPU programming is suboptimal

because of the fixed function logic. Although a lot of high-

performance and high-throughput calculations can be sped up

significantly using GPUs, we are currently far from a hard-

ware- and platform-independent technology. The only hope is

that hardware manufacturers and/or operating-system manu-

facturers will agree on a common API that does not depend on

the hardware used. In the long run, it is very likely that

companies such as Intel or AMD will (re-)enter the data-

parallel market. Intel have already released a new compiler

generation called High Performance Parallel Optimizer that is

capable of auto-vectorizing and auto-parallelization, which

utilizes loop unrolling and peeling. A great deal of workloads

have been analyzed by Intel, including well known HPC

kernels such as 3D-FFT and BLAS3, converging towards a

common core of computing (Chen et al., 2008). This approach

shows great potential for a common run-time, a common

programming model and common compute kernels, data

structures and math functions. Once these steps are complete,

the code generation for a specific platform being CUDA/CTM

or Larrabee/Fusion is a political and marketing issue but not

an academic problem. In summary, it is still too early to tell

which API or programming model will succeed in the long run,

but today’s technology can already be utilized. The trend is

set: get ready for the data-parallel multicore age (Che et al.,

2008) and exploit as much concurrency in algorithms as

possible.

Single-particle cryo-EM is certainly one field in which GPU

computing currently pays off. Nowadays, electron microscopes

allow data collection to be completely automated. In combi-

nation with fast and large detectors, these instruments can

produce massive amounts of data within a very short amount

of time. In the best case, one can expect such microscopes to

collect up to several million particle images within a week. The

collection of this huge amount of data is only reasonable if

new algorithms workshop

Acta Cryst. (2009). D65, 659–671 Schmeisser et al. � Computing technologies in single-particle electron microscopy 669

the computer infrastructure needed to process the data is

powerful enough to keep up with data collection. In the cryo-

EM field it is thus almost impossible to rely only on CPUs. In

contrast, the massive speedup that can be achieved on GPUs

for most of the embarrassingly parallel applications needed in

single-particle cryo-EM image processing makes the compu-

tational analysis of millions of images possible on a medium-

sized GPU cluster. For compute-intense applications such as

single-particle cryo-EM, GPUs are thus the only option simply

because of the lack of any other affordable alternatives. In

single-particle cryo-EM the most compute-intense applica-

tions are image alignment of a large number of randomly

oriented macromolecules imaged in the electron microscope

and three-dimensional reconstruction using these aligned

images. We implemented the alignment of images to reference

templates and the subsequent three-dimensional reconstruc-

tion in CUDA and ran these on a dedicated GPU Cluster

featuring 320 NVIDIA Tesla boards using MPI for the work

distribution amongst cluster nodes. Additionally, we ran a

dynamic cluster using SmartTray, featuring up to 120 compute

nodes with up to 360 CPUs that are partly equipped with

CUDA-enabled GPUs. Performance measurements on the

dedicated GPU cluster show a speedup of three-dimensional

reconstruction using the simultaneous iterative reconstruction

technique (SIRT) algorithm by a factor of �65 comparing one

CPU to one GPU using a pixel frame of 64 � 64. The speedup

of the image alignment is more difficult to measure because

the actual alignment algorithms implemented on CPU and

GPU are also significantly different. Additionally, there is a

significant dependence of the measured speedup on the image

size. Using small images (such as 64 � 64 pixels) the speedup

on the GPU compared with the CPU is almost negligible.

However, for high-resolution three-dimensional structure

determination high image statistics need to be combined with

small pixel sampling. For most macromolecules we thus expect

a pixel frame size to be in the range of 256 � 256 pixels and

1024 � 1024 pixels. Using these larger images the measured

speedup of GPU computing is in the range of 10–100 times,

allowing the determination of high-resolution three-dimen-

sional structures by single-particle cryo-EM in an acceptable

time frame.

The authors would like to thank all members of the Stark

laboratory that volunteered to test our software. Additionally,

we would like to thank everyone who runs the SmartTray on

their computer. Special thanks go to Irene Boettcher-

Gajewski and Peter Goldmann for invaluable Photoshop

experience and photo shooting.

References

Amdahl, G. M. (1967). AFIPS Conf. Proc. 30, 483–485.
Anderson, D. P. (2004). Proceedings of the Fifth IEEE/ACM

International Workshop on Grid Computing, pp. 4–10. Washington:
IEEE Computer Society.

Beguelin, A., Dongarra, J., Geist, A., Manchek, R. & Sunderam, V.
(1991). A User’s Guide to PVM Parallel Virtual Machine.
University of Tennessee.

Bilbao-Castro, J. R., Carazo, J. M., Fernández, J. J. & Garcı́a, I. (2004).
12th Euromicro Conference on Parallel, Distributed and Network-
Based Processing, pp. 96–102. Washington: IEEE Computer
Society.

Boyd, C. (2008). Queue, 6, 30–39.
Buck, I. (2007a). International Conference on Computer Graphics and

Interactive Techniques: ACM SIGGRAPH 2007 Courses, course 24,
article 6. New York: ACM.

Buck, I. (2007b). Proceedings of the International Symposium on
Code Generation and Optimization, p. 17. Washington: IEEE
Computer Society.

Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M.
& Hanrahan, P. (2004). ACM Trans. Graph. 23, 777–786.

Castaño-Dı́ez, D., Moser, D., Schoenegger, A., Pruggnaller, S. &
Frangakis, A. S. (2008). J. Struct. Biol. 164, 153–160.

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W. & Skadron, K.
(2008). J. Parallel Distrib. Comput. 68, 1370–1380.

Chen, Y.-K., Chhugani, J., Dubey, P., Hughes, C. J., Daehyun, K.,
Kumar, S., Lee, V. W., Nguyen, A. D. & Smelyanskiy, M. (2008).
Proc. IEEE, 96, 790–807.

Dagum, L. & Menon, R. (1998). IEEE Comput. Sci. Eng. 5, 46–55.
Flynn, M. J. (1972). IEEE Trans. Comput. 21, 948–960.
Govindaraju, N. K., Lloyd, B., Dotsenko, Y., Smith, B. & Manferdelli,

J. (2008). Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, article 2. Piscataway: IEEE Press.

Gustafson, J. (1988). Commun. ACM, 31, 532–533.
Hensley, J. (2007). International Conference on Computer Graphics

and Interactive Techniques: ACM SIGGRAPH 2007 Courses,
course 24, article 7. New York: ACM.

Herlihy, M. (1991). ACM Trans. Program. Lang. Syst. 13, 124–149.
Herlihy, M. & Luchangco, V. (2008). SIGACT News, 39, 62–72.
Herlihy, M. & Moss, J. E. B. (1993). ACM SIGARCH Comput. Archit.

News, 21, 289–300.
Hou, Q., Zhou, K. & Guo, B. (2008). ACM Trans. Graph. 27, 1–12.
Lefohn, A., Houston, M., Luebke, D., Olick, J. & Pellacini, F. (2008).

International Conference on Computer Graphics and Interactive
Techniques: ACM SIGGRAPH 2008 Classes, article 18. New York:
ACM.

Lindholm, E., Nickolls, J., Oberman, S. & Montrym, J. (2008). Micro,
IEEE, 28, 39–55.

Mark, W. R., Glanville, R. S., Akeley, K. & Kilgard, M. J. (2003).
International Conference on Computer Graphics and Interactive
Techniques: ACM SIGGRAPH 2003 Papers, pp. 896–907. New
York: ACM.

Moore, G. E. (1965). Electron. Mag. 38, 114–117.
Moreland, K. & Angel, E. (2003). Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS Conference on Graphics Hard-
ware, pp. 112–119. Aire-la-Ville, Switzerland: Eurographics Asso-
ciation.

Munshi, A. (2008). OpenCL Parallel Computing on the GPU and
CPU. http://s08.idav.ucdavis.edu/munshi-opencl.pdf.

Neumann, J. von (1946). Reprinted in IEEE Ann. Hist. Comput. 3,
263–273.

Nickolls, J., Buck, I., Garland, M. & Skadron, K. (2008). Queue, 6,
40–53.

Park, S.-Y. & Hariri, S. (1997). J. Supercomput. 11, 159–180.
Pharr, M. & Fernando, R. (2005). GPU Gems 2: Programming

Techniques for High-Performance Graphics and General-Purpose
Computation. Upper Saddle River: Addison–Wesley Professional.

Schaller, R. R. (1997). Spectrum, IEEE, 34, 52–59.
Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey,

P., Junkins, S., Lake, A., Sugerman, J., Cavin, R., Espasa, R.,
Grochowski, E., Juan, T. & Hanrahan, P. (2008). ACM Trans.
Graph. 27, article 18.

Smith, L. & Bull, M. (2001). Sci. Program. 9, 83–98.
Stratton, J. A., Stone, S. S. & Hwu, W. W. (2008). 21st Annual

Workshop on Languages and Compilers for Parallel Computing
(LCPC’2008). http://www.gigascale.org/pubs/1328.html.

new algorithms workshop

670 Schmeisser et al. � Computing technologies in single-particle electron microscopy Acta Cryst. (2009). D65, 659–671

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB34

Sutter, H. (2005). Dr Dobb’s J. 30.
Sutter, H. & Larus, J. (2005). Queue, 3, 54–62.
Tarditi, D., Puri, S. & Oglesby, J. (2005). Accelerator: Simplified

Programming of Graphics-Processing Units for General-Purpose
Uses via Data-Parallelism. Technical Report MSR-TR-2004-184.
Microsoft Corporation.

Tarditi, D., Puri, S. & Oglesby, J. (2006). ACM SIGARCH Comput.

Archit. News, 34, 325–335.
Wang, C., Mueller, F., Engelmann, C. & Scott, S. L. (2008).

Proceedings of the 2008 ACM/IEEE Conference on Supercom-
puting, article 64. Piscataway: IEEE Press.

Wrinn, M. (2007). Is the Free Lunch Really Over? Scalability in
Many-core Systems. Intel White Paper. http://software.intel.com/
file/7354.

new algorithms workshop

Acta Cryst. (2009). D65, 659–671 Schmeisser et al. � Computing technologies in single-particle electron microscopy 671

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB36
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB37
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB38
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB39
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB40
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ic5056&bbid=BB40

